ASSIGNMENT SET – I

Mathematics: Semester-III

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-305A

Paper: Special Paper-OR: Advanced Optimization

1.	<i>a</i>)	Find the conjugate directions of the following real symmetric matrix:	2 Marks
		$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$	for each
			question
	b)	Is it possible to obtain the optimal integer solution of an IPP after	
		neglecting integer restrictions and round-off the optimal solution of the	
		corresponding LPP? Justify.	
	<i>c</i>)	"Revised simplex method is better than the original simplex method",	
		why?	
	<i>d</i>)	What are the basic differences between analytical and numerical	
	,	optimization methods?	
	e)	Denne goar programming problem.	
	<i>f</i>)	In Branch and bound method, when a node is called " <i>fathomed</i> "?	
	g)	Define the term "Gomory's constraint".	
	h)	Define integer programming problem? Give an example of it.	
	i)	Write the limitation of Fibonacci Method?	
	j)	Define quadratically convergent method and A-conjugate directions.	

	<i>k</i>)	Explain Different types of achievements in goal programming problem.				
	l)	Define unimodal maximization and minimization function.				
	m)	Using algebraic approach show that the expression $ax + \frac{b}{x} + c$; $a, b > b$				
		0 as minimum value $2\sqrt{ab} + c$ at $x = \sqrt{\frac{b}{a}}$.				
	n)	What is post optimality analysis?				
	o)	State the necessary and sufficient conditions for maximum point of a multivariable optimization problem.				
	p)	Differentiate revised simplex and dual simplex approaches.				
	q)	Explain deletion of an existing variable in the optimal table of an LPP.				
	r)	What is Unimodal Function?				
	s)	What is basic difference between Fibonacci method and Golden section				
		method? Which one is better and why?				
	t)	What is the basic difference between direct search method and decent				
		method?				
	u)	Write the iteration scheme of steepest descent method.				
2.	<i>a</i>)	Describe the Golden section method to optimize a unimodal function and	4 Marks			
		implement a flowchart of this method.	for each			
	b)	Minimize the function $f(x) = 0.65 - \left[\frac{0.75}{1+x^2}\right] - 0.65 x \tan^{-1}\left(\frac{1}{x}\right)$ in the	question			
		interval [0, 3] by Fibonacci method using $n = 6$.				
	c)	Derive the conditions of the range of discrete changes of the component				
		of cost vector (C) of the LPP				
		Maximize Z = CX				
		subject to $AX = b$				
		and $X \ge 0$				
		such that the optimal solution does not alter.				
	d)	The optimal result of the LPP				
		$Maximizez = 2x_1 + 2x_2$				
	subjectto					
		$5x_1 + 3x_2 \le 8$				

$$x_1 + 2x_2 \le 4$$

and $x_1, x_2 \ge 0$

is given in the following table:

C _B	X _B	В	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y_4
2	<i>x</i> ₁	4/7	1	0	2/7	-3/7
2	<i>x</i> ₂	12/7	0	1	-1/7	5/7
Z_j -	– С _ј		0	0	2/7	4/7

Find the optimal results after addition of the following constraints:

I. $3x_1 + 2x_2 \le 6$.

II. $3x_1 + 3x_2 \le 5$.

- *e)* Write the procedure of Fibonacci method to solve a unimodal optimization problem.
- *f*) Find the 1st Gomory's constraints of the following integer programming problem

Maximize $z = 3x_1 - 2x_2$

Subject to $12x_1 + 7x_2 \le 28$ $x_1, x_2 \ge 0$ and are integers.

- g) The production manager facts the problem of job allocation among three of his teams. The processing rates of three teams are 5, 6, and 8 units per hour respectively. The normal Working hours for each team are 8 hours per day. The Production manager has the following goals for the next day in order of priority:
 - (i) The manager wants to avoid any underachievement of production level, which is set at 180 units of production.
 - (ii) Any overtime operation of team 2 beyond 2hrs and team 3 beyond 3 hrs. should be avoided.
 - (iii) Minimize the sum of overtime.

Formulate above goal programming problem.

h) Using Newton's method

Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ with (0,0) as starting point.

i) When required an artificial constraint method to solve an LPP. Explain

		it with an example.			
	j) write the steps of Davidon – Fletcher – Powell method to solve a net j				
		linear optimization problem.			
3.	<i>a</i>)	Solve the following LPP using Revised Simplex method.	8 Marks		
		$Max \ z = x_1 + 2x_2$	for each		
		Subject to, $2x_1+5x_2 \ge 6$,	question		
		$x_1+x_2 \ge 2, x_1, x_2 \ge 0.$			
	b)	Using Davidon-Fletcher-Powell method minimize $f(x_1, x_2) = x_1^2 +$			
		$2x_2^2 + x_1 - 2x_2$ starting from the point $\begin{pmatrix} 1\\ 0 \end{pmatrix}$.			
	<i>c</i>)	Solve the following IPP using Branch and bound method.			
		$Maximize \qquad z = 5x_1 + 4x_2$			
		$x_1 + x_2 \le 5,$ $10x_1 + 6x_2 \le 45,$			
		Subject to $x_1, x_2 \ge 0$			
		x_1, x_2 integers.			
	<i>a</i>)	Solve the following goal programming problem: $Minimizer = D d^{-} + D (2d^{-} + 2d^{-})$			
		$Minimizez = P_1a_1 + P_2(2a_2 + 3a_3)$			
		Subject to			
		$20x_1 + 10x_2 \le 60$			
		$10x_1 + 10x_2 \le 40$			
		$40x_1 + 80x_2 + u_1 - u_1 = 000$ $x_1 + d^2 - d^4 - 2$			
		$x_1 + d_2 - d_2 = 2$ $x_1 + d^ d^+ = 2$			
		$x_2 + u_3 = u_3 - 2$ $x_1 - x_2 + 2 = 0$ $x_1 - 1 - 2 = 3$			
	e)	Solve the following problem using Gomory's cutting plane method:			
		solve the following problem using contery is eating plane method.			
		Maximize $f = 4x_1 + 3x_2$			
		$3x_1 + 4x_2 \le 12$,			
		Subject to $\begin{array}{c} 4x_1 + 2x_2 \leq 9, \\ x_1, x_2 \geq 0 \end{array}$			
		and integers.			
	<i>f</i>) Solve the following IPP using Branch and bound method.				
		$\operatorname{Max} z = 7x_1 + 9x_2$			

Subject to $-x_1 + 3x_2 \le 6$ $7x_1 + x_2 \le 35$ $x_1, x_2 \ge 0$ and integers. g) Solve the following LPP by revised simplex method Minimize $z = 2x_1 + x_2$ Subject to constraints $3x_1 + x_2 \le 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \le 3$ and $x_1, x_2 \ge 0$ **h**) Using cutting plane method, solve Maximize $f = 7 - 2x_1 - 4x_2$ Subject to the constraints $(x_1 - 4)^2 + 2(x_2 - 3)^2 - 12 \le 0$ $x_1 + 2x_2 - 6 \le 0$ $1 \le x_1, x_2 \le 6$ with the tolerance $\varepsilon = 0.03$ *i*) Using steepest descent method minimize the function $f(x_1, x_2, x_3) =$ $x_1^2 + x_2^2 + x_3^2 - 6x_1 - 4x_2 + 3x_3 + 9$ starting from the point (1, 2, -3).*j*) Determine the effect of discrete changes in the requirement vector of the LPP Max z = cx, subject to $Ax = b, x \ge 0$. k) Define goal programming problem. A firm produces two products A and B. Each product must be processed through two departments namely 1 and 2. Department 1 has 30 hours of production capacity per day and department 2 has 60 hours. Each unit of product A requires 2 hours in department 1 and 6 hours in department 2. Each unit of product B requires 3 hours in department 1 and 4 hours in department 2. Management has established the following goals it would like to achieve in determining the daily product mix: P_1 : The joint total production at least 10 units. P_2 : Producing at least 7 units of product B. P_3 : Producing at least 8 units of product A. Formulate this problem as a goal programming problem.

l) Using this method minimize $f = x_1^2 + x_2^2 + x_3^2 + 2gx_1 + 2hx_2 + 2kx_3 + c$ starting from the point (1, 0, 1). *m*) Solve the following IPP by Gomory's cutting plane method Minimize $z = 2x_1 + 3x_2$ subject to the constrains $80 x_1 + 31 x_2 \ge 248$ $x_1, x_2 \ge 0$ and are integers.

End