ASSIGNMENT SET - I
Mathematics: Semester-III
M.Sc (CBCS)

Department of Mathematics
Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-305A

Paper: Special Paper-OR: Advanced Optimization

a) Find the conjugate directions of the following real symmetric matrix: $\left(\begin{array}{ll}2 & 3 \\ 3 & 1\end{array}\right)$

2 Marks
for each question
b) Is it possible to obtain the optimal integer solution of an IPP after neglecting integer restrictions and round-off the optimal solution of the corresponding LPP? Justify.
c) "Revised simplex method is better than the original simplex method", why?
d) What are the basic differences between analytical and numerical optimization methods?
e) Define goal programming problem.
$f)$ In Branch and bound method, when a node is called "fathomed"?
g) Define the term "Gomory's constraint".
h) Define integer programming problem? Give an example of it.
i) Write the limitation of Fibonacci Method?
j) Define quadratically convergent method and A-conjugate directions.
k) Explain Different types of achievements in goal programming problem.
$l)$ Define unimodal maximization and minimization function.
m) Using algebraic approach show that the expression $a x+\frac{b}{x}+c ; a, b>$ 0 as minimum value $2 \sqrt{a b}+c$ at $x=\sqrt{\frac{b}{a}}$.
n) What is post optimality analysis?
o) State the necessary and sufficient conditions for maximum point of a multivariable optimization problem.
p) Differentiate revised simplex and dual simplex approaches.
q) Explain deletion of an existing variable in the optimal table of an LPP.
r) What is Unimodal Function?
s) What is basic difference between Fibonacci method and Golden section method? Which one is better and why?
\boldsymbol{t}) What is the basic difference between direct search method and decent method?
u) Write the iteration scheme of steepest descent method.
2.
a) Describe the Golden section method to optimize a unimodal function and implement a flowchart of this method.
b) Minimize the function $f(x)=0.65-\left[\frac{0.75}{1+x^{2}}\right]-0.65 x \tan ^{-1}\left(\frac{1}{x}\right)$ in the interval $[0,3]$ by Fibonacci method using $n=6$.
c) Derive the conditions of the range of discrete changes of the component of cost vector (C) of the LPP

$$
\begin{gathered}
\text { Maximize } Z=C X \\
\text { subject to } \mathrm{A} X=b \\
\text { and } X \geq 0
\end{gathered}
$$

such that the optimal solution does not alter.
d) The optimal result of the LPP

$$
\begin{gathered}
\text { Maximizez }=2 x_{1}+2 x_{2} \\
\text { subjectto } \\
5 x_{1}+3 x_{2} \leq 8
\end{gathered}
$$

$$
\begin{gathered}
x_{1}+2 x_{2} \leq 4 \\
\text { and } x_{1}, x_{2} \geq 0
\end{gathered}
$$

is given in the following table:

C_{B}	X_{B}	B	y_{1}	y_{2}	y_{3}	y_{4}
2	x_{1}	$4 / 7$	1	0	$2 / 7$	$-3 / 7$
2	x_{2}	$12 / 7$	0	1	$-1 / 7$	$5 / 7$
$Z_{j}-C_{j}$			0	0	$2 / 7$	$4 / 7$

Find the optimal results after addition of the following constraints:
I. $3 x_{1}+2 x_{2} \leq 6$.
II. $3 x_{1}+3 x_{2} \leq 5$.
$\boldsymbol{e})$ Write the procedure of Fibonacci method to solve a unimodal optimization problem.
f) Find the $1^{\text {st }}$ Gomory's constraints of the following integer programming problem

Maximize $\mathrm{z}=3 x_{1}-2 x_{2}$
Subject to $12 x_{1}+7 x_{2} \leq 28 \quad x_{1}, x_{2} \geq 0$ and are integers.
g) The production manager facts the problem of job allocation among three of his teams. The processing rates of three teams are 5,6 , and 8 units per hour respectively.The normal Working hours for each team are 8 hours per day. The Production manager has the following goals for the next day in order of priority:
(i) The manager wants to avoid any underachievement of production level, which is set at 180 units of production.
(ii) Any overtime operation of team 2 beyond 2 hrs and team 3 beyond 3 hrs. should be avoided.
(iii) Minimize the sum of overtime.

Formulate above goal programming problem.
h) Using Newton's method

Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}{ }^{2}+2 x_{1} x_{2}+x_{2}{ }^{2} \quad$ with $(0,0)$ as starting point.
i) When required an artificial constraint method to solve an LPP. Explain
it with an example.
j) write the steps of Davidon - Fletcher -Powell method to solve a nonlinear optimization problem.
3.
a) Solve the following LPP using Revised Simplex method.

$$
\operatorname{Max} z=x_{1}+2 x_{2}
$$

Subject to, $2 x_{1}+5 x_{2} \geq 6$,

$$
x_{1}+x_{2} \geq 2, x_{1}, x_{2} \geq 0
$$

b) Using Davidon-Fletcher-Powell method minimize $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+$ $2 x_{2}^{2}+x_{1}-2 x_{2}$ starting from the point $\binom{1}{0}$.
c) Solve the following IPP using Branch and bound method.

Maximize	$z=5 x_{1}+4 x_{2}$
	$x_{1}+x_{2} \leq 5$,
Subject to	$10 x_{1}+6 x_{2} \leq 45$,
	$x_{1}, x_{2} \geq 0$
	x_{1}, x_{2} integers.

d) Solve the following goal programming problem:

$$
\begin{gathered}
\text { Minimizez }=P_{1} d_{1}^{-}+P_{2}\left(2 d_{2}^{-}+3 d_{3}^{-}\right) \\
\text {subject to } \\
20 x_{1}+10 x_{2} \leq 60 \\
10 x_{1}+10 x_{2} \leq 40 \\
40 x_{1}+80 x_{2}+d_{1}^{-}-d_{1}^{+}=600 \\
x_{1}+d_{2}^{-}-d_{2}^{+}=2 \\
x_{2}+d_{3}^{-}-d_{3}^{+}=2 \\
x_{1}, x_{2}, d_{i}^{-}, d_{i}^{+} \geq 0, i=1,2,3
\end{gathered}
$$

$\boldsymbol{e})$ Solve the following problem using Gomory's cutting plane method:

Maximize	$f=4 x_{1}+3 x_{2}$
	$3 x_{1}+4 x_{2} \leq 12$,
Subject to	$4 x_{1}+2 x_{2} \leq 9$,
	$x_{1}, x_{2} \geq 0$
and integers.	

f) Solve the following IPP using Branch and bound method.

$$
\operatorname{Max} z=7 x_{1}+9 x_{2}
$$

$$
\begin{array}{ll}
\text { Subject to } & -x_{1}+3 x_{2} \leq 6 \\
& 7 x_{1}+x_{2} \leq 35
\end{array} \quad x_{1}, x_{2} \geq 0 \text { and integers. }
$$

g) Solve the following LPP by revised simplex method

Minimize $z=2 x_{1}+x_{2}$
Subject to constraints

$$
\begin{aligned}
& 3 x_{1}+x_{2} \leq 3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 3 \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

h) Using cutting plane method, solve

Maximize $\mathrm{f}=7-2 x_{1}-4 x_{2}$
Subject to the constraints
$\left(x_{1}-4\right)^{2}+2\left(x_{2}-3\right)^{2}-12 \leq 0$
$x_{1}+2 x_{2}-6 \leq 0$
$1 \leq x_{1}, x_{2} \leq 6$ with the tolerance $\varepsilon=0.03$
i) Using steepest descent method minimize the function $f\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}-6 x_{1}-4 x_{2}+3 x_{3}+9$ starting from the point $(1,2$, $-3)$.
j) Determine the effect of discrete changes in the requirement vector of the LPP Max $z=c x$, subject to $A x=b, x \geq 0$.
k) Define goal programming problem. A firm produces two products A and B. Each product must be processed through two departments namely 1 and 2. Department 1 has 30 hours of production capacity per day and department 2 has 60 hours. Each unit of product A requires 2 hours in department 1 and 6 hours in department 2. Each unit of product B requires 3 hours in department 1 and 4 hours in department 2. Management has established the following goals it would like to achieve in determining the daily product mix:
P_{1} : The joint total production at least 10 units.
P_{2} : Producing at least 7 units of product B.
P_{3} : Producing at least 8 units of product A.
Formulate this problem as a goal programming problem.
l) Using this method minimize $f=x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+2 g x_{1}+2 h x_{2}+$ $2 k x_{3}+c$ starting from the point $(1,0,1)$.
m) Solve the following IPP by Gomory's cutting plane method

$$
\text { Minimize } z=2 x_{1}+3 x_{2}
$$

subject to the constrains
$80 x_{1}+31 x_{2} \geq 248$
$x_{1}, x_{2} \geq 0$ and are integers.

End

